Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Torsten Winkler, ${ }^{a} \dagger$ Rainer
Herges, ${ }^{\text {a }}+$ Peter G. Jones ${ }^{\text {b }}$ * and Ina Dix ${ }^{\mathbf{a}} \ddagger$

${ }^{\text {a }}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
† Current address: Institut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24098 Kiel, Germany
\neq Current address: Bruker AXS GmbH, PO Box, 76181 Karlsruhe, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.104$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A tetrakis(secondary amide) derivative of quadricyclane: $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetraisopropyl-3-isopropylidenetetracyclo[3.2.0.0 ${ }^{2,7} \cdot 0^{4,6}$]-heptane-1,5,6,7-tetracarboxamide

The title compound, $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}$, displays approximate twofold symmetry. The four amide groups are arranged such that four intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed. The molecules are linked into layers by bifurcated $(\mathrm{C}-\mathrm{H})_{2} \cdots \mathrm{O}$ interactions.

Comment

This structure determination forms part of a short series of structures of norbornadiene and quadricyclane tetra-amides. Introductory material was presented in the previous paper (Winkler et al., 2003). Here we present the structure of the title compound, (I), a tetrakis(secondary amide) derivative of quadricyclane.

Received 20 May 2003
Accepted 21 May 2003
Online 24 June 2003

The molecule (Fig. 1) possesses approximate twofold symmetry. Molecular dimensions, including those of the strained quadricyclane system (Table 1), may be considered normal. The four amide groups are arranged such that four intramolecular hydrogen bonds (Table 2) of the type N $\mathrm{H} \cdots \mathrm{O}$ are formed, in the same pattern as reported in the previous paper.

The molecules are connected to form layers perpendicular to the $b c$ plane by two bifurcated intermolecular hydrogen bond systems $(\mathrm{C}-\mathrm{H})_{2} \cdots \mathrm{O}$ of graph set $R_{2}^{1}(7)$ (Fig. 2). One of the $\mathrm{H} \cdots \mathrm{O}$ interactions, $\mathrm{H} 4 \cdots \mathrm{O} 3$, is very short, with a normalized $\mathrm{H} \cdots \mathrm{O}$ distance of only $2.21 \AA$.

Experimental

The title compound was prepared according to Winkler (2002) and recrystallized from a solution in dichloromethane/methanol by evaporation.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \\
& M_{r}=472.62 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=13.3354(18) \AA \\
& b=12.1987(16) \AA \\
& c=16.981(2) \AA \\
& \beta=104.454(4)^{\circ} \\
& V=2674.9(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.174 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 6314
reflections
$\theta=2.2-28.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=143$ (2) K
Prism, yellow
$0.42 \times 0.17 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer

ω scans

Absorption correction: none
35207 measured reflections
5478 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
5478 reflections
333 parameters
H atoms treated by a mixture of independent and constrained refinement

4203 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-16 \rightarrow 16$
$k=-15 \rightarrow 15$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0509 P)^{2}\right. \\
& \quad+0.6537 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.19 \mathrm{e}^{-3} \AA^{-3} .
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-C2	$1.5209(18)$	C3-C8	$1.3345(18)$
C1-C5	$1.5563(17)$	C3-C4	$1.4765(18)$
C1-C7	$1.5707(18)$	C4-C5	$1.5224(17)$
C2-C3	$1.4828(18)$	C4-C6	$1.5245(17)$
C2-C7	$1.5217(18)$	C5-C6	$1.5630(18)$
C11-C1-C2	$119.99(11)$	C4-C5-C1	$103.92(10)$
C11-C1-C5	$132.62(11)$	C15-C5-C6	$133.58(11)$
C2-C1-C5	$103.91(10)$	C4-C5-C6	$59.20(8)$
C11-C1-C7	$126.88(11)$	C1-C5-C6	$90.16(9)$
C2-C1-C7	$58.95(8)$	C19-C6-C4	$118.36(10)$
C5-C1-C7	$89.67(9)$	C19-C6-C7	$132.61(11)$
C3-C2-C1	$109.47(10)$	C4-C6-C7	$104.07(10)$
C3-C2-C7	$109.64(10)$	C19-C6-C5	$128.68(11)$
C1-C2-C7	$62.16(9)$	C4-C6-C5	$59.07(8)$
C8-C3-C4	$128.71(12)$	C7-C6-C5	$90.12(9)$
C8-C3-C2	$130.00(12)$	C23-C7-C2	$122.01(11)$
C4-C3-C2	$101.29(10)$	C23-C7-C6	$128.12(11)$
C3-C4-C5	$109.70(10)$	C2-C7-C6	$103.91(10)$
C3-C4-C6	$109.56(10)$	C23-C7-C1	$132.62(11)$
C5-C4-C6	$61.73(8)$	C2-C7-C1	$58.89(8)$
C15-C5-C4	$120.42(11)$	C6-C7-C1	$90.05(9)$
C15-C5-C1	$128.51(11)$		
C2-C1-C11-O1	$38.23(18)$	C4-C6-C19-O3	$44.37(17)$
C5-C1-C11-O1	$-166.51(13)$	C7-C6-C19-O3	$-164.94(13)$
C7-C1-C11-O1	$-33.62(19)$	C5-C6-C19-O3	$-27.21(19)$
C2-C1-C11-N1	$-141.00(13)$	C4-C6-C19-N3	$-132.78(13)$
C5-C1-C11-N1	$14.3(2)$	C7-C6-C19-N3	$17.9(2)$
C7-C1-C11-N1	$147.16(13)$	C5-C6-C19-N3	$155.65(12)$
C4-C5-C15-O2	$121.03(13)$	C2-C7-C23-O4	$125.20(14)$
C1-C5-C15-O2	$-24.4(2)$	C6-C7-C23-O4	$-23.1(2)$
C6-C5-C15-O2	$-164.08(13)$	C1-C7-C23-O4	$-159.44(13)$
C4-C5-C15-N2	$-55.89(17)$	C2-C7-C23-N4	$-51.96(18)$
C1-C5-C15-N2	$158.64(12)$	C6-C7-C23-N4	$159.75(13)$
C6-C5-C15-N2	$19.0(2)$	C1-C7-C23-N4	$23.4(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 01 \cdots \mathrm{O} 2$	0.892 (17)	1.849 (18)	2.7279 (15)	168.3 (16)
N2-H02 . . O	0.881 (17)	1.910 (17)	2.7686 (15)	164.3 (15)
$\mathrm{N} 3-\mathrm{H} 03 \cdots \mathrm{O}$	0.919 (18)	1.785 (18)	2.6959 (16)	170.6 (15)
$\mathrm{N} 4-\mathrm{H} 04 \cdots \mathrm{O} 1$	0.888 (18)	1.858 (18)	2.7331 (16)	168.1 (16)
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.98	2.54	3.4176 (17)	149
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$	0.98	2.58	3.4461 (18)	148
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {ii }}$	1.00	2.29	3.2723 (16)	167
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O}^{\text {ii }}$	0.98	2.51	3.4581 (17)	164

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, 1-y, 1-z$.

Figure 1
The molecule of the title compound in the crystal. Displacement ellipsoids are drawn at the 30% probability level. H -atom radii are arbitrary. Hydrogen bonds are indicated by dashed lines.

Figure 2
Packing diagram of the title compound, viewed perpendicular to the $b c$ plane. Isopropyl groups have been omitted for clarity, as have other H atoms not involved in hydrogen bonds. Intermolecular hydrogen bonds are shown as thick dashed lines and intramolecular hydrogen bonds have been omitted.

H atoms bonded to N atoms were refined freely. Methyl H atoms were located in difference syntheses, idealized ($\mathrm{C}-\mathrm{H} 0.98 \AA$ and $\mathrm{H}-$ $\mathrm{C}-\mathrm{H} 109.5^{\circ}$) and refined on the basis of rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $1.00 \AA$; $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\mathrm{eq}}$ of the parent atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

organic papers

References

Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Winkler, T. (2002). PhD thesis, Technical University of Braunschweig, Germany.
Winkler, T., Herges, R., Jones, P. G. \& Dix, I. (2003). Acta Cryst. E59, o994o996.

